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ABSTRACT 

In this paper we propose to utilize a new concept of 
discrete directional Gabor frames for automatic image       
registration. The directional Gabor representations have been       
shown to provide more accurate feature extraction than        
directional wavelet transforms for images where texture is the         
dominant feature. Initial experimental results are presented       
here which indicate that discrete directional Gabor frames        
exhibit strong correlations, which indicates that they are likely         
to improve the existing image registration toolbox. 
Index Terms​-- ​Image registration, Gabor systems, Remotely-sensed 

 
1. INTRODUCTION 

 
A major challenge to the field of remote sensing is to create an             
accurate and robust system for automatic image registration.        
The goal of image registration is to align two images that           
represent the same scene but taken under different conditions.         
This is done by treating one image, known as the reference, as            
static and then finding a transformation for the second image,          
known as the input, that will align it with the reference [1]. 

Methods based on wavelets and shearlets have been        
shown to be effective for registration of most remotely-sensed         
images [1], [2]. However, these methods do not perform         
particularly well on images where texture is the dominant         
feature, or for multisensor image registration such as        
LIDAR-to- optical registration [1]. 

Recently, discrete directional Gabor frames have       
been shown to be better at representing images where texture          
is the dominant feature [3]. This method of representation         
captures information about not only textural features within an         
image, but also their direction. In this paper, we provide          
evidence that the discrete directional Gabor frames will be         
able to perform well for automated registration of        
remotely-sensed images where texture is the dominant feature. 

 
 
 

 
 

 
2. BACKGROUND ON AUTOMATED IMAGE 

REGISTRATION 
 

As was previously defined, image registration is the process         
by which two images, or one image and a map, get aligned. In             
the remote sensing domain, we can assume that a prior          
alignment has been performed using navigation input, i.e.,        
through what is called “systematic correction”. Image       
registration is the “precision correction” step, which is        
feature-based, i.e., based on information included in the        
images. Any image registration algorithm can be described by         
three main components: (1) feature extraction, (2) similarity        
metrics, and (3) feature matching. In this work, we mainly          
concentrate on the feature extraction component. Our team        
previously performed extensive work with automated image       
registration algorithms based on features extracted from       
wavelet and shearlet decompositions. In [2], we looked at         
orthonormal (e.g., Daubechies’) and Spline wavelet      
decompositions, as well as at the wavelet-like Simoncelli        
overcomplete representation. When compared using an L2       
Norm and a Levenberg-Marquart optimization, results showed       
that Spline and Simoncelli features perform better than        
orthonormal wavelets, that Simoncelli features offered a better        
performance in terms of accuracy, but that Spline wavelet         
features are more robust when the initial conditions are further          
from the optimal solution. In [1], with the goal of improving           
the robustness of this image registration algorithm to the initial          
conditions, we then investigated the use of shearlets as         
compared to wavelets and to Simoncelli; this study showed         
that shearlet features are more robust to the initial conditions          
than wavelet or Simoncelli features but, when close to the          
solution, Simoncelli still get the best accuracy. A combination         
of shearlets and Simoncelli features was then proposed and         
outperformed all other features for both accuracy and        
performance. The remaining challenge came with textured       
images, in particular LIDAR images of forested areas which         
did not present well contrasted features, and for which no          
specific feature extraction methods, included edge detection,       
SIFT detector, or wavelet/shearlet decompositions provided      
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satisfactory results. This led us to investigate the use of the           
directional Fourier transform. 
 

3. DIRECTIONAL FOURIER TRANSFORM 
 

Counter to a common belief in image analysis that         
wavelet-based techniques are superior to other approaches,       
Fourier and Gabor methods play a significant role, see, eg, [4,           
5, 6, 7]. In this regard, Grafakos and Sansing proposed the           
concept of directional time-frequency analysis in [8]. They        
introduce directional sensitivity in the time-frequency setting       
by considering projections onto the elements of the unit         
sphere. The Radon transform arises naturally in this context         
and it enables continuous and semi-continuous reconstruction       
formulas. 

Czaja et al [3] developed a theory of discrete         
directional Gabor frames, related to the concept of Gabor         
ridge systems of Grafakos and Sansing. They considered        
elements of the form: 

 
for a given function . The construction results in a          
discrete frame: 

, 
Such a system is called a ​discrete directional Gabor         

frame​. 
A natural choice for the window function is        

, due to its compact Fourier support       

. The indexing set,    

 
must be discrete with respect to the natural topology of          

. We chose its bounded finite subset so that         
for a 2M X 2N image      

. The  
translation parameter runs over the set n = 4k, |k| ≤ 5 for             
integers k. 

 
4. METHODS 

 
Experiments were performed on a real image that was         
synthetically transformed. The image was based on a 1024 x          
1024 image extracted from Band 4 of a Landsat-TM scene of           
the Mount Hood National Forest. The reference image and         

each input image were run through the code for discrete          
directional Gabor frames and the ​dual​, the vector of         
coefficients,  was extracted. 

 
Fig. 1 Reference image (left) and input image, which has been           
translated -10 pixels in the x-direction and rotated 10 degrees          
clockwise (right) 

Then, the mean square error (MSE) between the dual         
of the reference image and the input image was taken. The           
equation for MSE is given by,  

   (1) 
where N is the length of the dual vectors. The MSE was used             
as a similarity metric between pairs of image duals.  

To generate the reference image, shown on the left of          
Figure 1, an 85 x 85 sub-image was extracted from the Mount            
Hood image. To generate the first input image, the entire          
Mount Hood image was rotated 10 degrees clockwise. From         
this rotated image, a 85 x 85 sub-image was extracted 10           
pixels to the left of the center of the rotated image, as shown             
on the right on Figure 1. This off-center extraction was used as            
a proxy for a translation of -10 pixels in the x-direction. The            
discrete directional Gabor frame transform was then       
performed on both the input image and the reference image.          
Using (1), the MSE between the two dual vectors was          
calculated. 881 total reference images were generated each        
with an integer rotation angle between -10 degrees        
counter-clockwise and 10 degrees counter-clockwise and      
either an integer translation between -10 pixels and 10 pixels          
in the x-direction and 0 pixels in the y-direction, or an integer            
translation between -10 pixels and 10 pixels in the y-direction          
and 0 pixels in the x-direction. The MSE was calculated          
between the dual for the reference image and the dual for each            
of the input images. Finally, the MSEs were averaged between          
the cases with no translation in the x-direction and the cases           
with no translation in the y-direction and the results are shown           
in Figure 2. 

To see what effect noise had on the results, the          
experiments were repeated with white Gaussian noise       
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randomly added to each of the input images before running          
through the discrete directional Gabor frame transform.  

 
 ​5. RESULTS 

 
At each of the three levels of noise, the MSE is smallest where             
the transformation is smallest and it grows as the         
transformation grows. However, the error does not grow        
uniformly. Figure 2 shows that small changes in rotation angle          
with no translation produce a much larger MSE than small          
translations with no rotation angle. This can be explained by          
the fact that the discrete directional Gabor frames contain         
directional information, which will naturally change as the        
rotation angle changes, but will not necessarily change for         
small translations.  

 
Fig. 2​ Results from no added noise 

Figures 2, 3, and 4 show MSE as a function of           
translation, in pixels, and rotation angle, in degrees        
counter-clockwise. The MSE is shaded in steps of 75, with          
black representing transformations that produced an MSE of        
less than 75.  

At small levels of noise, the results still show a fairly           
strong correlation. As σ increases linearly, the MSE grows         
exponentially. Above a value of -35, the correlation between         
the reference and the dual is weak and likely would be unable            
to successfully be registered. Figure 4 shows a large area          
where all of the MSEs are between 300 and 375 (the darkest            
region in Figure 4).  

 
Fig. 3 ​Results from noise with σ=-35 

 
Fig. 4 ​Results from noise with σ = -25 
 

 
Fig. 5​ Normalized results from the discrete directional Gabor frames. 
This is the data from Figure 2 normalized.  



 
Fig. 6​ Normalized shearlet transform comparison 

 
6. CONCLUSION 

 
The results presented in this paper show a good indication that           
discrete directional Gabor frames can be successfully used to         
perform automatic image registration. ​When comparing      
Directional Gabor to Shearlets [1], we can see from the 2 plots            
shown in Figures 5 and 6 that the Directional Gabor results           
show lower errors for larger values of rotation and translation          
than the Shearlet results. This indicates that Directional Gabor         
features should be more reliable to larger transformations than         
Shearlets. Additional experimental results will be shown at the         
conference. ​In the future, experiments should be conducted        
using one or more different images with synthetic        
transformations, and on multi-sensor images.  
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